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Abstract We show that the equations of reinforcement learning and light transport
simulation are related integral equations. Based on this correspondence, a scheme to
learn importance while sampling path space is derived. The new approach is demon-
strated in a consistent light transport simulation algorithm that uses reinforcement
learning to progressively learn where light comes from. As using this information for
importance sampling includes information about visibility, too, the number of light
transport paths with zero contribution is dramatically reduced, resulting in much less
noisy images within a fixed time budget.

1 Introduction

One application of light transport simulation is the computational synthesis of images
that cannot be distinguished from real photographs. In such simulation algorithms
[25], light transport is modeled by a Fredholm integral equation of the second kind
and pixel colors are determined by estimating functionals of the solution of the
Fredholm integral equation. The estimators are averages of contributions of sampled
light transport paths that connect light sources and camera sensors.

Compared to reality, where photons and their trajectories are abundant, a computer
may only consider a tiny fraction of path space, which is one of the dominant reasons
for noisy images. It is therefore crucial to efficiently find light transport paths that
have an important contribution to the image. While a lot of research in computer
graphics has been focussing on importance sampling [19, 4, 3, 1, 24], for long there
has not been a simple and efficient online method that can substantially reduce the
number of light transport paths with zero contribution [33].
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2 Ken Dahm and Alexander Keller

p∼ Le fs cosθ

Fig. 1 In the illustration, radiance is integrated by sampling proportional to the product of emitted
radiance Le and the bidirectional scattering distribution function fs representing the physical surface
properties taking into account the fraction of radiance that is incident perpendicular to the surface,
which is the cosine of the angle θ between the surface normal and the direction of incidence. As
such importance sampling does not consider blockers, light transport paths with zero contributions
cannot be avoided unless visibility is considered.

The majority of zero contributions are caused by unsuitable local importance
sampling using only a factor instead of the complete integrand (see Fig. 1) or by
trying to connect vertices of light transport path segments that are occluded, for
example shooting shadow rays to light sources or connecting path segments starting
both from the light sources and the camera sensors. An example for this inefficiency
has been investigated early on in computer graphics [30, 31]: The visible part of the
synthetic scene shown in Fig. 4 is lit through a door. By closing the door more and
more the problem can be made arbitrarily more difficult to solve.

We therefore propose a method that is based on reinforcement learning [28] and
allows one to sample light transport paths that are much more likely to connect
lights and sensors. Complementary to first approaches of applying machine learning
to image synthesis [33], in Sec. 2 we show that light transport and reinforcement
learning can be modeled by the same integral equation. As a consequence, importance
in light transport can be learned using any light transport algorithm.

Deriving a relationship between reinforcement learning and light transport simula-
tion, we establish an automatic importance sampling scheme as introduced in Sec. 3.
Our approach allows for controlling the memory footprint, for suitable representa-
tions of importance does not require preprocessing, and can be applied during image
synthesis and/or across frames, because it is able to track distributions over time. A
second parallel between temporal difference learning and next event estimation is
pointed out in Sec. 4.

As demonstrated in Sec. 5 and shown in Fig. 8, already a simple implementation
can dramatically improve light transport simulation. The efficiency of the scheme
is based on two facts: Instead of shooting towards the light sources, we are guiding
light transport paths to where the light comes from, which effectively shortens path
length, and we learn importance from a smoothed approximation instead from higher
variance path space samples [19, 10, 23].
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Agent St

Environment

AtSt+1 Rt+1(At | St)

Fig. 2 The setting for reinforcement learning: At time t, an agent is in state St and takes an action
At , which after interaction with the environment brings him to the next state St+1 with a scalar
reward Rt+1.

2 Identifying Q-Learning and Light Transport

The setting of reinforcement learning [28] is depicted in Fig. 2: An agent takes an
action thereby transitioning to the resulting next state and receiving a reward. In
order to maximize the reward, the agent has to learn which action to choose in what
state. This process very much resembles how humans learn.

Q-learning [39] is a model free reinforcement learning technique. Given a set of
states S and a set of actions A, it determines a function Q(s,a) that for any s ∈ S
values taking the action a ∈ A. Thus given a state s, the action a with the highest
value may be selected next and

Q(s,a) = (1−α) ·Q(s,a)+α ·
(

r(s,a)+ γ ·max
a′∈A

Q(s′,a′)
)

(1)

may be updated by a fraction of α ∈ [0,1], where r(s,a) is the reward for taking the
action resulting in a transition to a state s′. In addition, the maximum Q-value of
possible actions in s′ is considered and discounted by a factor of γ ∈ [0,1).

Instead of taking into account only the best valued action,

Q(s,a) = (1−α) ·Q(s,a)+α ·

(
r(s,a)+ γ · ∑

a′∈A
π(s′,a′)Q(s′,a′)

)

averages all possible actions in s′ and weighs their values Q(s′,a′) by a transition
kernel π(s′,a′), which is a strategy called expected SARSA [28, Sec.6.6]. This is
especially interesting, as later it will turn out that always selecting the ”best” action
does not perform as well as considering all options (see Fig. 4). For a continuous
space A of actions, we then have

Q(s,a) = (1−α) ·Q(s,a)+α ·
(

r(s,a)+ γ ·
∫

A
π(s′,a′)Q(s′,a′)da′

)
. (2)

On the other hand, the radiance
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L(x,ω) = Le(x,ω)+
∫

S +(x)
L(h(x,ωi),−ωi) fs(ωi,x,ω)cosθidωi (3)

in a point x on a surface into direction ω is modeled by a Fredholm integral equation
of the second kind. Le is the source radiance and the integral accounts for all radiance
that is incident over the hemisphere S +(x) aligned by the surface normal in x and
transported into direction ω . The hitpoint function h(x,ωi) traces a ray from x into
direction ωi and returns the first surface point intersected. The radiance from this
point is attenuated by the bidirectional scattering distribution function fs, where the
cosine term of the angle θi between surface normal and ωi accounts for only the
fraction that is perpendicular to the surface.

A comparison of Eqn. 2 for α = 1 and Eqn. 3 reveals structural similarities of
the formulation of reinforcement learning and the light transport integral equation,
respectively, which lend themselves to matching terms: Interpreting the state s as
a location x ∈ R3 and an action a as tracing a ray from location x into direction ω

resulting in the point y := h(x,ω) corresponding to the state s′, the reward term r(s,a)
can be linked to the emitted radiance Le(y,−ω) = Le(h(x,ω),−ω) as observed from
x. Similarly, the integral operator can be applied to the value Q, yielding

Q(x,ω) = Le(y,−ω)+
∫

S +(y)
Q(y,ωi) fs(ωi,y,−ω)cosθidωi, (4)

where we identified the discount factor γ multiplied by the policy π and the bidi-
rectional scattering distribution function fs. Taking a look at the geometry and the
physical meaning of the terms, it becomes obvious that Q in fact must be the radiance
Li(x,ω) incident in x from direction ω and in fact is described by a Fredholm integral
equation of the second kind - like the light transport equation 3.

Fig. 3 Comparison of simple path tracing without (left) and with (right) reinforcement learning
importance sampling. The top row is using 8 paths per pixel, while 32 are used for the bottom row.
The challenge of the scene is the area light source on the left indirectly illuminating the right part of
the scene. The enlarged insets illustrate the reduction of noise level.
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a b

c d

e f

Fig. 4 Comparison at 1024 paths per pixel (the room behind the door is shown in Fig. 5): a) A
simple path tracer with cosine importance sampling, b) the Kelemen variant of the Metropolis light
transport algorithm, c) scattering proportional to Q, while updating Q with the maximum as in
Eqn. 1 and d) scattering proportional to Q weighted by the bidirectional scattering distribution
function and updating accordingly by Eqn. 5. The predominant reinforcement approach of always
taking the best next action is inferior to selecting the next action proportional to Q, i.e. considering
all alternatives. A comparison to the Metropolis algorithm reveals much more uniform lighting,
especially much more uniform noise and the lack of the typical splotches. e) The average path
length of path tracing (above image diagonal) is about 215, while with reinforcement learning it
amounts to an average of 134. The average path length thus is reduced by 40% in this scene. f)
Discretized hemispheres to approximate Q are stored in points on the scene surfaces determined
by samples of the Hammersley low discrepancy point set. Retrieving Q for a query point results
in searching for the nearest sample of Q that has a similar normal to the one in the query point
(see especially the teapot handles). The red points indicate where in the scene hemispheres to hold
the Qk are stored. The colored areas indicate their corresponding Voronoi cells. Storing the Qk in
this example requires about 2 MBytes of memory. Scene courtesy (cc) 2013 Miika Aittala, Samuli
Laine, and Jaakko Lehtinen (https://mediatech.aalto.fi/publications/graphics/GMLT/).
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6 Ken Dahm and Alexander Keller

3 Q-Learning while Path Tracing

In order to synthesize images, we need to compute functionals of the radiance
equation 3, i.e. project the radiance onto the image plane. For the purpose of this
article, we start with a simple forward path tracer [25, 14]: From a virtual camera,
rays are traced through the pixels of the screen. Upon their first intersection with
the scene geometry, the light transport path is continued into a scattering direction
determined according to the optical surface properties. Scattering and ray tracing are
repeated until a light source is hit. The contribution of this complete light transport
path is added to the pixel pierced by the initial ray of this light transport path when
started at the camera.

In this simple form, the algorithm exposes quite some variance as can be seen in
the images on the left in Fig. 3. This noise may be reduced by importance sampling.
We therefore progressively approximate Eqn. 4 using reinforcement learning: Once a
direction has been selected and a ray has been traced by the path tracer,

Q′(x,ω) = (1−α) ·Q(x,ω) (5)

+α ·
(

Le(y,−ω)+
∫

S +(y)
Q(y,ωi) fs(ωi,y,−ω)cosθidωi

)
is updated using a learning rate α . The probability density function resulting from
normalizing Q in turn is used for importance sampling a direction to continue the path.
As a consequence more and more light transport paths are sampled that contribute
to the image. Computing a global solution to Q in a preprocess would not allow for
focussing computations on light transport paths that contribute to the image.

3.1 Implementation

Often, approximations to Q are tabulated for each pair of state and action. In computer
graphics, there are multiple choices to represent radiance and for the purpose of this
article, we chose the data structure as used for irradiance volumes [6] to approximate
Q. Fig. 5 shows an exemplary visualization of such a discretization during rendering:
For selected points y in space, the hemisphere is stratified and one value Qk(y) is
stored per sector, i.e. stratum k. Fig. 4f illustrates the placement of probe centers y,
which results from mapping a two-dimensional low discrepancy sequence onto the
scene surface.

Now the integral

∫
S +(y)

Q(y,ωi) fs(ωi,y,−ω)cosθidωi ≈
2π

n

n−1

∑
k=0

Qk(y) fs(ωk,y,−ω)cosθk

in Eqn. 5 can be estimated by using each one uniform random direction ωk in each
stratum k, where θk is the angle between the surface normal in y and ωk.
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Fig. 5 The image shows parts of an example discretization of Q by a grid, where hemispheres are
uniformly distributed across the ground plane. The false colors indicate magnitude, where small
values are green and large values are red. The large values on each hemisphere point towards the
part of the scene, where the light is coming from. For example, under the big area light source on
the left, most radiance is incident as reflected radiance from the wall opposite to the light source.

The method has been implemented in an importance driven forward path tracer
as shown in Alg. 1: Only two routines for updating Q and selecting a scattering
direction proportional to Q need to be added. Normalizing the Q in a point y then
results in a probability density that is used for importance sampling during scattering
by inverting the cumulative distribution function. In order to guarantee ergodicity,
meaning that every light transport path remains possible, all Q(y) are initialized to
be positive, for example by a uniform probability density or proportional to a factor
of the integrand (see Fig. 1). When building the cumulative distribution functions
in parallel every accumulated frame, values below a small positive threshold are
replaced by the threshold.

The parameters exposed by our implementation are the resolution of the discretiza-
tion and the learning rate α .

3.2 Consistency

It is desirable to craft consistent rendering algorithms [14], because then all renderer
introduced artifacts, like for example noise, are guaranteed to vanish over time. This
requires the Qk(y) to converge, which may be accomplished by a vanishing learning
rate α .

In reinforcement learning [28], a typical approach is to count the number of visits
to each pair of state s and action a and using
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Algorithm 1: Augmenting a path tracer by reinforcement learning for impor-
tance sampling requires only two additions: The importance Q needs to be
updated along the path and scattering directions are sampled proportional to Q
as learned so far.

Function pathTrace(camera,scene)
throughput ← 1
ray← setupPrimaryRay(camera)
for i← 0 to ∞ do

(y,n)← intersect(scene, ray)// y := h(x,ω)
// addition 1: update Q
if i > 0 then

Q′(x,ω) =

(1−α)Q(x,ω)+α

(
Le(y,−ω)+

∫
S 2

+(y)
fs(ωi,y,−ω)cosθiQ(y,ωi)dωi

)
if isEnvironment(y) then

return throughput· getRadianceFromEnvironment(ray,y)

else if isAreaLight(y)
return throughput· getRadianceFromAreaLight(ray,y)

// addition 2: scatter proportional to Q
(ω, pω , fs)← sampleScatteringDirectionProportionalToQ(y)
throughput ← throughput · fs · cos(n,ω) / pω

ray← (y,ω)

α(s,a) =
1

1+visits(s,a)
.

The method resembles the one used to make progressive photon mapping consistent
[7], where consistency has been achieved by decreasing the search radius around a
query point every time a photon hits sufficiently close. Similarly, the learning rate
may also depend on the total number of visits to a state s alone, or even may be
chosen to vanish independently of state and action. Again, such approaches have
been explored in consistent photon mapping [15].

While the Qk(y) converge, they do not necessarily converge to the incident ra-
diance in Eqn. 4. First, as they are projections onto a basis, the Qk(y) at best only
are an approximation of Q in realistic settings. Second, as the coefficients Qk(y) are
learned during path tracing, i.e. image synthesis, and used for importance sampling,
it may well happen that they are not updated everywhere at the same rate. Neverthe-
less, since all operators are linear, the number of visits will be proportional to the
number of light transport paths [15] and consequently as long as Qk(y)> 0 whenever
Li(y,ωi)> 0 all Qk(y) will be updated eventually.
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3.3 Learning while Light Tracing

For guiding light transport paths from the light sources towards the camera, the
transported weight W of a measurement (see [29]), i.e. the characteristic function of
the image plane, has to be learned instead of the incident radiance Q. As W is the
adjoint of Q, the same data structures may be used for its storage. Learning both Q
and W allows one to implement bidirectional path tracing [29] with reinforcement
learning for importance sampling to guide both light and camera path segments
including visibility information for the first time. Note that guiding light transport
paths this way may reach efficiency levels that even can make bidirectional path
tracing and multiple importance sampling redundant [33] in many common cases.

Fig. 6 Two split-image comparisons of uniformly selecting area light sources and selection using
temporal difference learning, both at 16 paths per pixel. The scene on the left has 5000 area light
sources, whereas the scene on the right has about 15000 (San Miguel scene courtesy Guillermo M.
Leal Llaguno (http://www.evvisual.com/)).

4 Temporal Difference Learning and Next Event Estimation

Besides the known shortcomings of (bidirectional) path tracing [18, Sec.2.4 Problem
of insufficient techniques], the efficiency may be restricted by the approximation
quality of Q: For example, the smaller the light sources, the finer the required
resolution of Q to reliably guide rays to hit a light source. This is where next event
estimation may help [32, 16, 5].

Already in [38] the contribution of light sources has been “learned”: A probability
per light source has been determined by the number of successful shadow rays divided
by the total number of shadow rays shot. This idea has been refined subsequently
[17, 37, 2, 36].

For reinforcement learning, the state space may be chosen as a regular grid over
the scene, where in each grid cell c for each light source l a value Vc,l is stored that is
initialized with zero. Whenever a sample on a light source l is visible to a point x to
be illuminated in the cell c upon next event estimation, its value
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V ′c,l = (1−α)Vc,l +α · ‖Cl(x)‖∞ (6)

is updated using the norm of the contribution Cl(x). Building a cumulative distribution
function from all values Vc,l within a cell c, light may be selected by importance
sampling. Fig. 6 shows the efficiency gain of this reinforcement learning method
over uniform light source selection for 16 paths per pixel.

It is interesting to see that this is another relation to reinforcement learning: While
the Q-learning equation 5 takes into account the values of the next, non-terminal
state, the next state in event estimation is always a terminal state and Q-learning
coincides with plain temporal difference learning [27] as in equation 6.

4.1 Learning Virtual Point Light Sources

The vertices generated by tracing photon trajectories (see Sec. 3.3) can be considered
a photon map [11] and may be used in the same way. Furthermore, they may be used
as a set of virtual point light sources for example the instant radiosity [13] algorithm.

Continuously updating and learning the measurement contribution function W [29]
across frames and using the same seed for the pseudo- or quasi-random sequences
allows for generating virtual point light sources that expose a certain coherency
over time, which reduces temporal artifacts when rendering animations with global
illumination.

4.2 Learning Environment Lighting

Rendering sun and sky is usually done by distributing samples proportional to the
brightness of pixels in the environment texture. More samples should end up in
brighter regions, which is achieved by constructing and sampling from a cumulative
distribution function, for example using the alias method [35]. Furthermore, the
sun may be separated from the sky and simulated separately. The efficiency of
such importance sampling is highly dependent on occlusion, i.e. what part of the
environment can be seen from the point to be shaded (see Fig. 1).

Similar to Sec. 3.1 and in order to consider the actual contribution including
occlusion, an action space is defined by partitioning the environment map into tiles
and learning the importance per tile. Fig. 7 shows the improvement for an example
setting.

Page:10 job:LearningLT macro:svmult.cls date/time:16-Aug-2017/0:22



Learning Light Transport the Reinforced Way 11

Fig. 7 Sun and sky illumination at 32 paths per pixel. Top: simple importance sampling consid-
ering only the environment map as a light source. Bottom: Importance sampling with reinforce-
ment learned importance. The enlargements on the right illustrate the improved noise reduction.
Scene courtesy Frank Meinl, Crytek (http://graphics.cs.williams.edu/data/meshes/crytek-sponza-
copyright.html).

5 Results and Discussion

Fig. 4 compares the new reinforcement learning algorithm to common algorithms:
For the same budget of light transport paths, the superiority over path tracing with
importance sampling according to the reflection properties is obvious. A comparison
with the Metropolis algorithm for importance sampling [31, 12] reveals much more
uniform noise lacking the typical splotchy structure inherent with the local space
exploration of Metropolis samplers. Note, however, that the new reinforcement
learning importance sampling scheme could as well be combined with Metropolis
sampling. Finally, updating Q by Eqn. 1, i.e. the “best possible action” strategy is
inferior to using the weighted average of all possible next actions according to Eqn. 5.
In light transport simulation this is not surprising, as the deviation of the integrand
from its estimated maximum very often is much larger than from a piecewise constant
approximation.

The big gain in quality is due to the dramatic reduction of zero contribution
light transport paths (see Fig. 8), even under complex lighting. In Figs. 4a-d, the
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Fig. 8 Using reinforcement learning (RL), the number of paths actually connecting to a light
source is dramatically improved over classic importance sampling (IS) using only the bidirectional
scattering distribution function for importance sampling. As a result, more non-zero contributions
are accumulated for the same number of paths, see also Fig. 4.

same number of paths has been used. In each iteration, for path tracing with and
without reinforcement learning one path has been started per pixel, while for the
Metropolis variant the number of Markov chains equals the number of pixels of the
image. Rendering the image at 1280x720 pixels, each iteration takes 41ms for path
tracing, 49ms for Metropolis light transport [31, 12], and 51ms for the algorithm
with reinforcement learned importance sampling. Hence the 20% overhead is well
paid off by the level of noise reduction.

Shooting towards where the radiance comes from naturally shortens the average
path length as can be seen in Fig. 4e. Based on the approach to guide light paths
using a pre-trained Gaussian mixture model [33] to represent probabilities, in [34]
in addition the density of light transport paths is controlled across the scene using
splitting and Russian roulette. These ideas have the potential to further improve the
efficiency of our approach.

While the memory requirements for storing our data structure for Q are small, the
data structure is not adaptive. An alternative is an adaptive hierarchical approximation
to Q as used in [19, 23]. Yet, another variant would be learning parameters for lobes
to guide light transport paths [1]. In principle any data structure that has been used in
graphics to approximate irradiance or radiance is a candidate. Which data structure
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Learning Light Transport the Reinforced Way 13

and what parameters are best, may depend on the scene to be rendered. For example,
using discretized hemispheres limits the resolution with respect to solid angle. If
the resolution is chosen too fine, learning is slow, if the resolution is to coarse,
convergence is slow.

Given that Q asymptotically approximates the incident radiance Li, it is worthwhile
to investigate how it can be used for the separation of the main part as explored in
[19, 24] to further speed up light transport simulation or even as an alternative to
importance sampling.

Beyond what we explore, path guiding has been extended to consider product im-
portance sampling [9] and reinforcement learning [28] offers more policy evaluation
strategies to consider.

6 Conclusion

Guiding light transport paths has been explored in [19, 10, 4, 24, 1, 33, 23]. However,
key to our approach is that by using a representation of Q in Eqn. 5 instead of solving
the equation by recursion, i.e. a Neumann series, Q may be learned much faster and
in fact during sampling light transport paths without any preprocess. This results in a
new algorithm to increase the efficiency of path tracing by approximating importance
using reinforcement learning during image synthesis. Identifying Q-learning and
light transport, heuristics have been replaced by physically based functions, and the
only parameters that the user may control are the learning rate and the discretization
of Q.

The combination of reinforcement learning and deep neural networks [22, 8, 20,
21] is an obvious avenue of future research: Representing the radiance on hemispheres
already has been successfully explored [26] and the interesting question is how well
Q can be represented by neural networks.

Acknowledgements The authors would like to thank Jaroslav Křivánek, Tero Karras, Toshiya
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16. Keller, A., Wächter, C., Raab, M., Seibert, D., Antwerpen, D., Korndörfer, J., Kettner, L.: The
Iray light transport simulation and rendering system. CoRR abs/1705.01263 (2017). URL
http://arxiv.org/abs/1705.01263 4

17. Keller, A., Wald, I.: Efficient importance sampling techniques for the photon map. In: Proc.
VISION, MODELING, AND VISUALIZATION, pp. 271–279. IOS Press (2000) 4

18. Kollig, T., Keller, A.: Efficient bidirectional path tracing by randomized quasi-Monte Carlo
integration. In: H. Niederreiter, K. Fang, F. Hickernell (eds.) Monte Carlo and Quasi-Monte
Carlo Methods 2000, pp. 290–305. Springer (2002) 4

19. Lafortune, E., Willems, Y.: A 5D tree to reduce the variance of Monte Carlo ray tracing.
In: P. Hanrahan, W. Purgathofer (eds.) Rendering Techniques 1995 (Proc. 6th Eurographics
Workshop on Rendering), pp. 11–20. Springer (1995) 1, 1, 5, 6

20. Lillicrap, T., Hunt, J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D.:
Continuous control with deep reinforcement learning. CoRR abs/1509.02971 (2015). URL
http://arxiv.org/abs/1509.02971 6

21. Mnih, V., Badia, A., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., Kavukcuoglu,
K.: Asynchronous methods for deep reinforcement learning. CoRR abs/1602.01783 (2016).
URL http://arxiv.org/abs/1602.01783 6

22. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller,
M.: Playing Atari with deep reinforcement learning. CoRR abs/1312.5602 (2013). URL
http://arxiv.org/abs/1312.5602 6

23. Müller, T., Gross, M., Novák, J.: Practical path guiding for efficient light-transport simulation.
In: Proceedings of the Eurographics Symposium on Rendering (2017) 1, 5, 6

24. Pegoraro, V., Brownlee, C., Shirley, P., Parker, S.: Towards interactive global illumination
effects via sequential Monte Carlo adaptation. In: Proceedings of the 3rd IEEE Symposium on
Interactive Ray Tracing, pp. 107–114 (2008) 1, 5, 6

25. Pharr, M., Jacob, W., Humphreys, G.: Physically Based Rendering - From Theory to Imple-
mentation. Morgan Kaufmann, Third Edition (2016) 1, 3

Page:14 job:LearningLT macro:svmult.cls date/time:16-Aug-2017/0:22

http://arxiv.org/abs/1509.06461
https://doi.org/10.1111/cgf.12950
http://arxiv.org/abs/1705.01263
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1312.5602


Learning Light Transport the Reinforced Way 15

26. Satilmis, P., Bashford-Rogers, T., Chalmers, A., Debattista, K.: A machine learning driven sky
model. IEEE Computer Graphics and Applications pp. 1–9 (2016) 6

27. Sutton, R.: Learning to predict by the methods of temporal differences. Machine Learning 3(1),
9–44 (1988) 4

28. Sutton, R., Barto, A.: Introduction to Reinforcement Learning, 2nd edn. MIT Press, Cambridge,
MA, USA (2017) 1, 2, 2, 3.2, 5

29. Veach, E., Guibas, L.: Bidirectional estimators for light transport. In: Proc. 5th Eurographics
Workshop on Rendering, pp. 147 – 161. Darmstadt, Germany (1994) 3.3, 4.1

30. Veach, E., Guibas, L.: Optimally combining sampling techniques for Monte Carlo rendering.
In: SIGGRAPH ’95 Proceedings of the 22nd annual conference on Computer graphics and
interactive techniques, pp. 419–428 (1995) 1

31. Veach, E., Guibas, L.: Metropolis light transport. In: T. Whitted (ed.) Proc. SIGGRAPH 1997,
Annual Conference Series, pp. 65–76. ACM SIGGRAPH, Addison Wesley (1997) 1, 5
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